
Acta Cryst. (2007). A63, 273–277 doi:10.1107/S0108767307011336 273

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 19 December 2006

Accepted 11 March 2007

# 2007 International Union of Crystallography

Printed in Singapore – all rights reserved

Size-dependent interbranch peculiarities of X-ray
extinction in strongly bent crystals

Michael Shevchenko

Institute for Metal Physics, 36 Vernadsky Street, 03142 Kiev, Ukraine. Correspondence e-mail:

mishevch@yahoo.com

X-ray diffraction from homogeneously bent crystals is studied within the

interbranch resonance concept for large gradient. It is shown that strong

deformations lead to an interbranch phase modulation of the transmitted and

diffracted waves. It is predicted that prominent extinction effects occur due to

the interbranch phase changes. These features are very sensitive to the crystal

thickness, so that changes of the order of the interbranch extinction length can

affect considerably the rocking-curve structure. Numerical calculations of the

diffracted intensity are carried out to illustrate this.

1. Introduction

The X-ray dynamical diffraction in a crystal with a uniform

strain gradient has been investigated in many theoretical and

experimental works [they are reviewed in detail by Authier

(2005)]. From the diffraction phenomena derived from these

studies, of special interest is the X-ray interbranch scattering,

predicted first by Penning (1966). It is worth pointing out that

this effect is due to lattice distortions and it disappears for a

perfect crystal. As the value of the strain gradient enlarges, the

interbranch scattering increases resonantly. This process is

accompanied by violation of Kato’s Eikonal theory and

significant intensification of ‘new’ wavefields whose tiepoints

belong to another dispersion branch than those which are

propagating (Authier & Balibar, 1970; Balibar et al., 1983).

In the case of strong deformation, the X-ray diffraction

occurs in a small thickness range, which is considerably less

than the X-ray extinction length �g for an ideal crystal. This

implies the kinematical approach to X-ray scattering. In this

connection, we pay attention to the fact that all extinction

effects for real crystals, which consist of mosaic blocks statis-

tically misoriented with respect to one another, are neglected

in the kinematical approximation (Zachariasen, 1967). Only in

the successive approximation which rejects solely the ‘feed-

back’ term of the equations for the transmitted power does the

correction on the secondary extinction (Darwin, 1922) appear

for small mosaic blocks. However, the atoms in a bent crystal

are displaced in a regular and well defined fashion, such that

even in a highly distorted crystal the scattered waves must be

regarded as perfectly coherent with the incident wave. As a

result, the waves diffracted by the different atoms will inter-

fere constructively by involving the phase relations among

themselves. Thus, the X-ray multiple scattering which influ-

ences the phases of the reflected waves ought to be manifested

in the diffracted intensity from a strongly bent crystal.

It is necessary to observe that the link between the inter-

branch scattering and the extinction caused by a regular strain

field in a single coherent domain has been established for ideal

thickness variation (Kuriyama & Miyakawa, 1970). The

changes of the diffracted intensity from the dynamical to the

kinematical value as a function of the degree of crystal

imperfections were studied in that case. It was also shown that

the passage from dynamical to kinematical scattering is

described by an extinction term which is due to the inter-

branch transitions. From this viewpoint, we consider as well

the extinction problem for a strongly bent crystal. Applying

the interbranch resonance concept (Shevchenko, 2005), we are

going to find the correlation between extinction effects and

interbranch scattering of X-rays in the crystal. Obviously, such

‘fine-structure’ effects will reflect the violation of the principle

of local ‘lattice homogeneity’ inherent in a weakly deformed

crystal.

2. Basic equations

Assuming a one-dimensional distortion, the equations of the

dynamical diffraction theory have the following form (Hirsch

et al., 1977):
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where D0;gðzÞ, s and uðzÞ stand for the amplitudes of the

transmitted and diffracted waves, the deviation from the point

in the reciprocal space and a displacement field which depends

only on the depth z inside the crystal, respectively. It is

convenient to expand the amplitudes D0 and Dg over the

Eikonal basic functions:

D0;gðzÞ ¼ exp i
Rz
0

qðz1Þ dz1

� � P
j¼1;2

A
j
0;gðzÞ�

j
0;gðzÞ; ð3Þ



where qðzÞ ¼ ½sþ g duðzÞ=dz�=2, A1;2
0;gðzÞ and �1;2

0;gðzÞ are the

modulation amplitudes and the Eikonal solutions for the

transmitted and diffracted waves of equations (1) and (2) for

the ‘upper’ and ‘lower’ dispersion branches, respectively.

Expression (3) introduces the Eikonal representation of the

dynamical theory. This expansion simplifies the analysis of the

X-ray interbranch scattering by extracting the into-a-branch

contribution from the amplitudes of the wavefields. In the

symmetrical Laue case, the fundamental equations for the

modulation amplitudes corresponding to the wave D0ðzÞ,

subjected to the interbranch crossover, are given by (Shev-

chenko, 2005)

dA1;2
0 ðzÞ

dz
¼ �

A2;1
0 ðzÞ exp �ð2i�=�gÞ

R z

0 pðz1Þdz1

� �
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d�ðzÞ
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: ð4Þ

Here pðzÞ ¼ ½1þ �2ðzÞ�1=2, where the deviation

�ðzÞ ¼ !þ ðg du=dzÞ�g=ð2�Þ and ! ¼ s�g=ð2�Þ. For the sake

of simplicity, we consider a homogeneous bending

uðzÞ ¼ �z2=ð2RÞ, where R (R > 0) and � are the radius of

curvature and a constant describing the deformation, respec-

tively. It is worth observing that the values ! and � cos �,

where � is the angle between g and u vectors, must have

opposite signs for the interbranch crossover occurrence.

For practical purposes, we shall assume that � cos �> 0.

Then, the deviation parameter �ðzÞ ¼ "�ðz� z0Þ=�g, where

" ¼ �g�2
g cos �=ð2�2RÞ and z0 corresponds to the point where

Bragg’s condition is locally satisfied

In the vicinity ~zz of any point zs, we approximate

uðzÞ � uðzsÞ þ u0ðzsÞ~zz, where z� zs ¼ ~zz. With this in mind,

equation (4) can be reduced in this range to
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where ps ¼ ½1þ �
2
s �

1=2 and �s ¼ �ðzsÞ. It should be noted that

�ðzÞ is a linear function of u0ðzÞ. Therefore, considering u0ðzÞ as

constant within a small region near zs, �ðzÞ and p(z) are also

considered to be constant �s and ps in that region. Using

equation (5), one can obtain the following expressions for the

modulation amplitudes A1;2
0 :

A1;2
0 ðzÞ ¼ Cþ1;2ðzsÞ expfiðQs �WsÞzg

þ C�1;2ðzsÞ expfið�Qs �WsÞzg: ð6Þ

Here Qs ¼ ½W
2
s þ ð�=LsÞ

2�1=2, Ws ¼ �ps=�g, Ls ¼ 2�gp2
s=".

Expression (6) describes the drastic changes of the local

dispersion surface in a highly deformed crystal. Owing to the

interbranch interchange, the dispersion branches ‘1’ and ‘2’

split into the ‘new’ waves 1� and 2� with the wavevectors

P�s;1 ¼ �Ws �Qs and P�s;2 ¼ Ws �Qs, respectively, which

have amplitudes C�1;2ðzsÞ. It should be noted that the inter-

branch dispersion anomalies can also be specified with the

help of ‘new’ Bloch modes  �B. By analogy with the conven-

tional dynamical theory, it is possible to introduce such waves

by combining the ‘new’ ‘upper’ (‘lower’) branches 1þ (1�) and

2þ (2�), respectively.

In the case of the interbranch crossover caused by the

strong deformations "� 1, it was shown in Shevchenko &

Pobydaylo (2005) that near z0 the energy transfers from the

wave  þB to the wave  �B . In doing so, we will neglect any

attenuation of the incident wave through the crystal by

diffraction. Then, adding only the local phase multipliers

�Qsz associated with the ‘new’ modes  �B, from (3) and (6),

the expressions for the transmitted wavefield follows for z< z0

and z> z0, respectively:

D0ðzÞ ¼

exp i
Rz
0

½qðz1Þ þQðz1Þ� dz1

� �
; z< z0

exp i
Rz
0

½qðz1Þ �Qðz1Þ� dz1

� �
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From (7), it appears that the changing of the sign of the

function Q(z) takes place in the expression for D0ðzÞ owing to

the jump of the tiepoint. In the kinematical approximation,

within which (7) is correct, extinction of X-rays was mentioned

above to be absent for a mosaic crystal. However, multiple

scattering effects can appear prominently in the beam

diffracted by a strongly bent crystal. To show this, we will

integrate equation (2) and write the following expression for

the amplitude of the diffracted wave:

DgðzÞ ¼
i�

�g

exp

�
2i

Zz

0

qðz1Þ dz1

�

�
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0
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�
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�
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Substituting (7) into (8), one gets
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where the step-function �ðz0 � zÞ equals 1 and �1 if

z0 � z> 0 and z0 � z< 0, respectively. Integrating by parts,

one can replace the phase integral
R z

0 Qðz1Þ dz1 by the

expression QðzÞz�
R z

0 Q0ðz1Þz1 dz1. It is clear that the former

term is significant near z0. As to the latter term, it can be

reduced to the expression �ð�=�gÞ
2
R z

0 pðz1Þp
0ðz1Þz1 dz1=Qðz1Þ,

in which the small terms are neglected. This integral is

appreciable only far from z0, where we are able to suggest

QðzÞ � ð�=�gÞpðzÞ. Then, it can be modified to the form

ð��=�gÞ½zpðzÞ �
R z

0 pðz1Þ dz1�. Taking into consideration that

pðzÞ ¼ j�ðzÞj far from z0, we reduce this expression to the

value "�2z2�ðz0 � zÞ=ð2�2
gÞ. Hence, it is possible to obtain the

following approximation for any z:

Rz
0

Qðz1Þ dz1 � QðzÞzþ ðg � u=2Þ�ðz0 � zÞ: ð10Þ

Substituting (10) into (9) and omitting the exponential factor

which does not affect the diffracted intensity, one can get
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Here & ¼ "�z=�g is a dimensionless variable. It is inter-

esting to point out that, when & � &0, expression (11) tends to

the special function �ði&2Þ, which coincides with the asymp-

totic of the rigorous solution for strong bending (Chukhovskii

& Petrashen’, 1977). This function corresponds as well to the

kinematical diffraction limit, related with the single scattering

of X-rays. Nevertheless, multiple scattering may be pro-

nounced near z0, even in the case of kinematical diffraction.

It takes place in the specific mechanism of multibeam inter-

change in a strongly bent crystal, which is different from X-ray

interference in a slightly deformed crystal. Indeed, considering

a weak distortion, multiple interference is reduced to the into-

a-branch contribution, associated with the amplitude modu-

lation of the transmitted and diffracted waves. This effect

produces Pendellösung fringes whose distances decrease with

increasing curvature (Kato, 1964). On the other hand, for high

bending, it follows from (7) and (11) that interbranch scat-

tering produces a phase modulation of the wavefields, instead

of an amplitude modulation. The effective period of the phase

modulation occurring near z0 can evidently be estimated by

the interbranch extinction length �g ¼ 2�g=". Since �g 
 �g,

the X-ray scattering can be formally treated as a kinematical

process. At the same time, by integrating in (11), the multiple

interbranch scattering specified by the parameter "=p2ð&Þ will

also be taken into account up to the highest-order approxi-

mations inclusively. Thus, within the given formalism we can

calculate the influence of multiple scattering on the phases of

the wavefields and determine the extinction features.

3. Numerical results

The phase modulation caused by the interbranch processes

may modify considerably the intensity of the diffracted wave

Ig. Supposing high bending, we find the diffracted intensity

Igð&Þ ¼ jDgð&Þj
2 by using expression (11) to demonstrate this

effect. In this connection, the curves related to " ¼ 102 and

" ¼ 103 are given in Figs. 1(a) and 1(b), respectively.

Both figures demonstrate clearly the oscillations of the

diffracted intensity as a function of the crystal thickness. They

are due to the interbranch phase changes and occur in the

vicinity of the point where Bragg’s condition is locally satis-

fied. Far from this point, oscillations disappear and the

intensity tends towards the kinematical limit. Obviously, the

spatial range of the interbranch oscillations, whose number

grows with increasing ", can be obtained from the estimations

p2
ð&Þ �

"2

2p4ð&Þ
: ð12Þ

From (12), it is easy to obtain the range of the oscillations

�intð&Þ ¼ 2j& � &0j � 2ð"=2Þ1=3. For example, for the defor-

mations " ¼ 102 and " ¼ 103, its magnitude is about 7.4 and

15.9 in units of �g=ð"�Þ or 1.2 and 2.5 in �g, respectively, which

correlates with the results presented in Fig. 1.

When calculating the X-ray rocking curve, one may expect

as well a decrease of the intensity due to integration of the

interbranch phase oscillations over the crystal thickness t in

(11). Moreover, the deformation will cause a shift of the

kinematical peak, which is equal to the value !M ¼ �2�t=�g.

In the case of j!Mj � �!1=2, where �!1=2 � �g=t is the half-

width of the rocking curve, the kinematical intensity is slowly

changed at !M . Therefore, the interbranch losses of the

intensity will be appreciable near this point. Far from !M , they
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Figure 1
Variations of the diffracted intensities versus &, near the points (a) &0 ¼ 5
and (b) &0 ¼ 50, which correspond to the depth 0:05�g=�.

Figure 2
The rocking curve for t ¼ 1:5�g. The interbranch ratio is � ¼ 0:3.



are minimal, since the interbranch transitions have to cease for

the deviation ! � !M and ! � 0. Obviously, such a distribu-

tion of the intensity with ! implies its splitting at !M , which is

verified in the calculated curve shown in Fig. 2.

It was also assumed that " ¼ 102 and t ¼ 1:5�g. This curve

displays convincingly the interbranch splitting, the value of

which can be estimated as j!Mj. In the angular units, the range

of the splitting �Qs ¼ 2�j!Mj=ðg�gÞ. It follows from this that

�Qs � 2000 corresponds to Fig. 2 under the model parameters

�g ¼ 10�5 m and g ¼ 2�� 1010 m�1. It should also be noted

that the interbranch splitting �Qs increases with increasing

deformation and can be of the order of angular minutes. To

specify the interbranch features, it is convenient to take into

consideration the ratio �ð"; tÞ ¼ j!Mj=�!1=2. In the latter

case, the interbranch ratio � ¼ 0:3 � 1 indicates a splitting of

the Bragg peak. As for the small additional peaks depicted in

Fig. 2 and located beyond the range of the main peak, they are

associated with the size effect, well known in kinematical

diffraction (Krivoglaz, 1996).

In fact, the interbranch splitting is a size-related extinction

effect, such that the angular splitting �Qs depends on t. Along

with this, not only the value of the interbranch effect but also

the form of manifestation of this effect in the rocking curve

can depend on the thickness, under the given deformation.

This is illustrated by Figs. 3(a) and 3(b), which correspond to

the deformation " ¼ 103. As one can see from the first figure,

the interbranch splitting degenerates with increased values of

t and �. Furthermore, the interbranch anomaly is transformed

into an asymmetrical broadening of the Bragg peak, while

t ¼ 9�g and � ¼ 1:0. These modifications of the interbranch

features are due to an increase of t, and consequently �, such

that the spatial range of the interbranch oscillations is suffi-

ciently small in relation to the crystal thickness. Besides this,

increasing thickness will be accompanied by an appropriate

decrease of the half-width �!1=2 of the rocking curve, which

changes sharply near !M. This means that the interbranch

losses of the diffracted intensity will not be so prominent

within the range of the diffraction maximum.

It is natural to suggest that the described extinction effects

can also be excited by the various long-range strain fields,

which are capable of causing the X-ray interbranch crossover.

Such displacements inherent in aged alloys, overgrown films

and other strained-layer systems may induce intensive inter-

branch transitions. In this connection, the studies of Tanner &

Hill (1986) and Barnett et al. (1989), which deal with the ‘fine

structure’ effects in the rocking curve from strongly distorted

heterostructures, should be pointed out. They reported that

the superlattice-related diffraction peaks reveal a splitting and

an asymmetrical broadening. It was also noted that the small

size changes of the order 103 Å can influence markedly the

rocking curve. Bearing in mind that the length �g can be of the

same order, it is possible to scale these changes in �g and to

interpret the features of the experimental curve as size-

dependent interbranch peculiarities. One can hope as well that

further investigation of the interbranch extinction anomalies

could be useful to make progress towards the solution of the

inverse problem and to give a deep insight into the theory of

X-ray diffraction by non-ideal crystals.

4. Conclusions

Here we sum up the main results obtained in this work.

(i) It is derived from the Eikonal representation of the

dynamical theory that the phase modulation of the trans-

mitted and diffracted waves is attributed to interbranch

processes in a strongly bent crystal. The effective modulation

period is determined by the interbranch extinction length �g.

(ii) The interbranch extinction effects, namely a splitting

and an asymmetrical broadening, are deduced by analyzing

the diffraction profile. They originate in the interbranch phase

oscillations, excited near the point where the Bragg condition

is locally satisfied.

(iii) It is established that the interbranch ‘fine structure’ of

the rocking curve depends on the crystal thickness. With

increasing thickness, the splitting of the Bragg peak degen-

erates and the interbranch peculiarity is transformed into

asymmetrical broadening. Since the appropriate changes of

the thickness are of the order of a few units of the interbranch
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Figure 3
The rocking curves for (a) t ¼ 6:5�g and (b) t ¼ 9�g, respectively. The
appropriate interbranch ratios are � ¼ 0:5 and � ¼ 1:0.



extinction length, which has a nano-sized value, the inter-

branch features can be for X-ray nano-studies.
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improvements.
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